You are here:

Number Theory/EVERY BIG PRIM NUMBER YIELDS SMALLER PRIME NUMBER

Advertisement


Question
# EVERY BIG PRIM NUMBER YIELDS SMALLER PRIME NUMBER. #
AM I RIGHT?
PRIME-UNIQUE NO = smaller prime no
ex

PRIME UNIQUE NO smaller prime no
3   1   2
5   2   3
7   2   5
11   6   5
13   6   7
17   6   11
19   6   13
23   6   17
29   6   23
31   12   19
37   30   7
41   30   11
43   30   13
47   30   17
53   30   23
59   30   29
61   30   31
67   30   37
71   30   41
73   30   43
79   60   19
83   60   23
89   60   29
97   60   37
101   60   41
103   60   43
107   60   47
109   90   19
113   90   23
127   90   37
131   90   41
137   90   47
139   120   19
149   120   29
151   120   31
157   120   37
163   120   43
167   120   47
173   150   23
179   150   29
181   150   31
191   150   41
193   150   43
197   150   47
199   180   19
211   180   31
223   210   13
227   210   17
229   210   19
233   210   23
239   210   29
241   210   31
251   210   41
257   210   47
263   210   53
269   210   59
271   210   61
277   210   67
281   210   71
283   210   73
293   210   83
307   210   97
311   210   101
313   210   103
317   210   107
331   300   31
337   300   37
347   300   47
349   330   19
353   330   23
359   330   29
367   330   37
373   330   43
379   360   19
383   360   23
389   360   29
397   360   37
401   360   41
409   390   19
419   390   29
421   390   31
431   390   41
433   390   43
439   420   19
443   420   23
449   420   29
457   420   37
461   420   41
463   420   43
467   420   47
479   420   59
487   420   67
491   420   71
499   420   79
503   420   83
509   420   89
521   420   101
523   420   103
541   510   31
547   510   37
557   510   47
563   540   23
569   540   29
571   540   31
577   540   37
587   540   47
593   570   23
599   570   29
601   570   31
607   570   37
613   570   43
617   570   47
619   600   19
631   600   31
641   600   41
643   630   13
647   630   17
653   630   23
659   630   29
661   630   31
673   630   43
677   630   47
683   630   53
691   630   61
701   630   71
709   630   79
719   630   89
727   630   97
733   630   103
739   630   109
743   630   113
751   720   31
757   720   37
761   720   41
769   750   19
773   750   23
787   750   37
797   750   47
809   780   29
811   780   31
821   780   41
823   780   43
827   780   47
829   810   19
839   810   29
853   840   13
857   840   17
859   840   19
863   840   23
877   840   37
881   840   41
883   840   43
887   840   47
907   840   67
911   840   71
919   840   79
929   840   89
937   840   97
941   840   101
947   840   107
953   840   113
967   960   7
971   960   11
977   960   17
983   960   23
991   960   31
997   960   37
1009   990   19
1013   990   23
1019   990   29
1021   990   31
1031   990   41
1033   990   43
1039   1020   19
1049   1020   29
1051   1020   31
1061   1020   41
1063   1050   13
1069   1050   19
1087   1050   37
1091   1050   41
1093   1050   43
1097   1050   47
1103   1050   53
1109   1050   59
1117   1050   67
1123   1050   73
1129   1050   79
1151   1050   101
1153   1050   103
1163   1050   113

EX

PRIME-UNIQUE NO = smaller prime no

PRIME UNIQUE NO smaller prime no
6917   6930   13
6947   6930   17
6949   6930   19
6959   6930   29
6961   6930   31
6967   6930   37
6971   6930   41
6977   6930   47
6983   6930   53
6991   6930   61
6997   6930   67
7001   6930   71
7013   6930   83
7019   6930   89
7027   6930   97
7039   6930   109
7043   6930   113
7057   6930   127
7069   6930   139
7079   6930   149

Answer
Hello Satish

The difference of any two odd primes is an even number.  But there is no way you can describe the even number as unique.

For example 29, 26,3: 29, 24,5: 29, 22,7: 29, 18,11: 29, 16,13: 29, 12,17: 29,10,19: 29,6,23.

Best wishes

vijilant

Number Theory

All Answers


Answers by Expert:


Ask Experts

Volunteer


Vijilant

Expertise

Most questions on number theory, divisibility, primes, Euclidean algorithm, Fermat`s theorem, Wilson`s theorem, factorisation, euclidean algorithm, diophantine equations, Chinese remainder theorem, group theory, congruences, continued fractions.

Experience

Teacher of math for 53 years

Organizations
AQA Doncaster Bridge Club Danum Strings Orchestra Doncaster Conservative Club Danum Strings Orchestra Simply Voices Choir Doncaster TNS mystery shopping St Paul's Music Group Cantley

Publications
Journal of mathematics and its applications M500 magazine

Education/Credentials
BSc (Hons) Liverpool (Science). BA (Hons) OU (Mathematics)

Awards and Honors
State Scholarship 1955 Highest Score in Yorkshire on OU course MST209 50 prize First class honours in OU BA Mathematics

Past/Present Clients
I taught John Birt, former Director of the BBC in 1961. His homework book was the most perfect I have ever marked. And also the most neat. I could tell he was destined for great things. One of my classmates was the poet Roger McGough, and I have a mention in his autobiography.

©2016 About.com. All rights reserved.